Poros propeller merupakan salah satu bagian terpenting dari instalasi
penggerak kapal. Putaran mesin ditransmisikan ke propeller melalui
poros, maka poros sangat mempengaruhi kerja mesin bila terjadi
kerusakan.
Yang perlu diketahui adalah bahwa kedudukan poros propeller dengan mesin
induk adalah harus segaris atau dengan kata lain harus dalam satu garis
sumbu. Jika kelurusan garis atau sumbu poros dan mesin induk belum
tercapai maka perlu dibuat tambahan dudukan untujk mesin atau mengurangi
tinggai dengan jalan mengurangi tebal bantalan, asalkan tebal bantalan
amsih dalam batas yang memenuhi criteria tebal minimum suatu bantalan.
Bantalan juga digunakan untuk mengurangi terjadinya getaran pada poros
yang mengakibatakan berkurangnya efektifitas poros propeller juga untuk
menghindari terjadinya deformasi pada poros propeller
Bagian – Bagian poros.
Tenaga kerja yang dihasilkan mesin induk di teruskan dalam bentuk putaran melalui serangkaian poros ke baling-baling diberikan dorongan yang di bangkitkan oleh baling-baling di teruskan kebadan kapaloleh poros baling-baling.Rangkaian poros itu disebut “Shafting” dan pada umumnya terdiri dari bagian –bagian berikut :
1. Poros pendorong ( Trust Shaft)
2. Poros bagian tengah (Poros antar) Intermediate shaft
3. Poros baling-baling ( Propeller shaft)
Ketiga poros ini saling di hubungkan oleh flange couplings ( sambungan flens)
KONSTRUKSI KAMAR MESIN KAPAL
Kamar mesin adalah kompartemen yang sangat penting pada sebuah kapal. Di
tempat inilah terdapat mesin penggerak kapal yang biasanya dinamakan
mesin induk atau mesin utama. Di kamar mesin pula terletaksumber tenaga
untuk membangkitkan listrik yang berupa generator listrik kapal,
pompa-pompa, dan bermacam-macam peralatan kerja yang
menunjangpengoperasian kapal. Konstruksi kamar mesin dibuat khusus
karena adanya beban-beban tambahan yang bersifat tetap, seperti
berputarnya mesin utama dan mesin lainnya.Situasi umum di dalam kamar
mesin dapat dilihat pada Gambar 1. Pada Gambar ini dapat dilihat mesin
utama menggerakkan baling-baling tunggal.
Untuk poros antara yang melalui ruang muat, dibuat terowongan poros
baling-baling di bagian bawah ruang muat. Selain itu ada lagi tipe kapal
yang mempunyai kamar mesin langsung di belakang, maksudnya tanpa ruang
palka di antara kamar mesin dengan ceruk buritan. Kamar mesin di tengah
jarang sekali digunakan. Untuk kamar mesin di belakang dapat dilihat
pada Gambar 2.
B. Fondasi Kamar Mesin
Gambar2. Konstruksi Kamar Mesin di Belakang
1. Mesin utama, 2. Generator,3. Wrang
kamar mesin, 4. Tangki pelumas cadangan,5. Poros antara, 6. Poros
baling-baling, 7. Baling-baling, 8. Kemudi, 9. Tangki air tawar, 10.
Cerobong asap
Kamar mesin pada kapal-kapal besar biasanya lebih dari dua lantai. Pada
lantai pertama atau lantai alas dalam terletak mesin utama dan pada
lantai kedua terletak generator pembangkit
tenaga listrik. Jumlah generator lebih dari satu, dan umumnya dua atau
tiga. Hal tersebut dimaksudkan sebagai cadangan, jika salah satu
generatornya rusak atau sedang dalam perbaikan.
Pada Gambar 3 diperlihatkan pandangan atas dari sebuah kamar mesin. Di
sini dapat dilihat bahwa mesin utama terletak tepat pada bidang simetri
kapal dan tiga buah generator listrik terletak pada lantai yang sama.
Gambar 3 Pandangan Atas Kamar Mesin
Gambar pandangan atas kamar mesin dibuat berdasarkan pandanganatas dari
lantai kamar mesin dan dinamakan gambar rencana tata letak kamar mesin.
Gambar-gambar lain yang lebih detail dari kamar mesin berpedoman pada
gambar rencana tata letak kamar mesin, misalnya gambar fondasi mesin
pompa-pompa, botol angin, keran-keran, dan sistem pipa pada kamar mesin.
A. Wrang pada Kamar Mesin
B = Lebar kapal (m).
h minimum = 180 mm.
A. Wrang pada Kamar Mesin
Wrang pada kamar mesin pada umumnya dipasang secara melintang.Ada
kalanya di kamar mesin dipakai konstruksi dasar ganda. Hal tersebut
mengingat ruang-ruang yang tersedia di antara wrang dapat dimanfaatkan
sebagai tangki-tangki, seperti tangki bahan bakar dan minyak pelumas.
Tetapi, dalam hal ini tidak berarti konstruksi alas tunggal sama sekali
tidak dipakai. Di antara penumpu bujur fondasi mesin, modulus penampang
Wrang alas boleh diperkecil sampai 40%. Tinggi pelat bilah wrang alas di
sekitar fondasi mesin sedapat mungkin diperbesar, artinya tidak terlalu
kecil jika dibandingkan dengan tinggi wrang. Tinggi wrang alas yang
disambung ke gading-gading sarang harus dibuat sama dengan tinggi
penumpu bujur fondasi. Tebal pelat tegak wrang alas tidak boleh kurang
dari :
t = h/100 + 4 (mm)
di mana :
h = 55 B - 45 (mm).B = Lebar kapal (m).
h minimum = 180 mm.
Pada dasar ganda, lubang-lubang peringan di sekitar fondasi mesin dibuat
sekecil mungkin. Bila lubang peringan ini berfungsi pula sebagai jalan
masuk orang, harus diperhitungkan dengan besar badan orang rata-rata.
Tepi lubang peringan sebaiknya diberi pelat hadap atau bidang pelatnya
diperlebar dengan penguat - penguat, bila tinggi lubang peringan lebih
besar dari ½ kali tinggi wrang. Dasar ganda dalam kamar mesin harus
dipasang wrang alas penuh pada setiap gading-gading. Tebal wrang di
kamar mesin diperkuat sebesar (3,6 + N/500)% dari wrang di ruang muat.
minimal 5% maksimal 15% dan N adalah daya mesin (kW). Penumpu samping
yang membujur di bawah pelat hadap fondasi yang dimasukkan kedalam alas
dalam harus setebal penumpu bujur fondasi di atas alas dalam. Hal ini
sesuai dengan Gambar 6.4 dan perhitungan fondasi. Di dalam dasar ganda
di bawah penumpu bujur fondasi, dipasang penumpu samping setebal wrang
alas yang diperkuat setinggi alas ganda sesuai denganperhitungan tebal
pelat tegak wrang alas. Jika pada setiap sisi mesin ada dua penumpu
bujur fondasi untuk mesin sampai 3.000 kW, salah satu penumpunsamping
boleh dibuat setengah tinggi bawah alas dalam. Penumpu samping yang
menjadi satu dengan penumpu bujur fondasi, pemasangannya harus
diperpanjang dua sampai empat kali jarak gading melewati sekat ujung
kamar mesin. Perpanjangan dua sampai empat kali tersebut dihubungkan
dengan sistem konstruksi alas dari ruang yang berhubungan. Di antara dua
penumpu bujur fondasi, alas dalam harus dipertebal 3 mm dari yang
direncanakan. Ketebalan ini diteruskan tiga sampai lima kali jarak
gading dari ujung-ujung fondasi mesin.
B. Fondasi Kamar Mesin
Fondasi kamar mesin merupakan suatu sarana pengikat agar mesin tersebut
tetap tegak dan tegar pada posisi yang telah ditetapkan atau supaya
mesin menjadi satu kesatuan dengan kapalnya sendiri. Pemasangan fondasi
mesin dibuat sedemikian rupa sehingga kelurusan sumbu poros mesin dengan
poros baling-baling tetap terjamin. Hubungan antara mesin utama,
fondasi mesin, dan wrang.
Kekakuan fondasi mesin dan konstruksi dasar ganda di bawahnya harus
mencukupi persyaratan. Hal ini dimaksudkan agar deformasi konstruksi
masih dalam batas-batas yang diizinkan. Mulai dari tahap perencanaan dan
pembuatan fondasi mesin harus dipikirkan penyaluran gaya-gayanya, baik
kearah melintang maupun ke arah membujur kapal.
Ketebalan pelat penumpu bujur fondasi tidak boleh kurang dari :
t = N/15 + 6 (mm), untuk N < t =" N/750" t =" N/1.875" n =" Kapal" style="text-align: justify;"> Jika pada setiap sisi motor dipasang dua penumpu bujur, tebal penumpu bujur tersebut dapat dikurangi 4 mm. Tebal dan lebar pelat hadap fondasi mesin harus disesuaikan dengan tinggi fondasi dan tipe mesin yang dipakai, sehingga pengikatan dan kedudukan mesin dapat dijamin sempurna. Tebal pelat hadap paling sedikit harus sama dengan diameter baut pas, penampang pelat hadap tidak boleh kurang dari :
F1 = N/15 + (30 cm2), untuk N 750 kW.
F1 = N/75 + 70 (cm2) N > 750 kW.
Penumpu bujur fondasi mesin harus ditumpu oleh wrang. Untuk pengikatan dengan las, pelat hadap dihubungkan dengan penumpu bujur dan penumpu lintang dengan kampuh K. Hal tersebut jika penumpu bujur lebih besar dari 15 mm.
Ketebalan pelat penumpu bujur fondasi tidak boleh kurang dari :
t = N/15 + 6 (mm), untuk N < t =" N/750" t =" N/1.875" n =" Kapal" style="text-align: justify;"> Jika pada setiap sisi motor dipasang dua penumpu bujur, tebal penumpu bujur tersebut dapat dikurangi 4 mm. Tebal dan lebar pelat hadap fondasi mesin harus disesuaikan dengan tinggi fondasi dan tipe mesin yang dipakai, sehingga pengikatan dan kedudukan mesin dapat dijamin sempurna. Tebal pelat hadap paling sedikit harus sama dengan diameter baut pas, penampang pelat hadap tidak boleh kurang dari :
F1 = N/15 + (30 cm2), untuk N 750 kW.
F1 = N/75 + 70 (cm2) N > 750 kW.
Penumpu bujur fondasi mesin harus ditumpu oleh wrang. Untuk pengikatan dengan las, pelat hadap dihubungkan dengan penumpu bujur dan penumpu lintang dengan kampuh K. Hal tersebut jika penumpu bujur lebih besar dari 15 mm.
C. Gading dan Senta di Kamar Mesin
W = K 0,8 e I Ps (cm3),
Di mana :
e = Jarak antara gading besar (m).
I = Panjang yang tidak ditumpu (m).
Ps = beban pada sisi kapal (kN/m2).
Momen kelembaman atau momen inersia gading-gading besar tidakboleh kurang dari :
J = H (4,5 H – 3,75) c 102 (cm4), untuk 3 m H 10 m.
J = H (7,25 H – 31) c 102 (cm4), untuk H > 10 m.
c = 1 + (Hu - 4) 0,07
di mana :
Hu = Tinggi sampai geladak terbawah (m)
Adapun Pelat bila Gading - Gading besar dihitung dengan rumus sebagai berikut :
Perencanaan dan pemasangan gading-gading di kamar mesin pada pokoknya
sama dengan pemasangan pada bagian-bagian kapal lainnya. Jadi, untuk
perhitungan gading-gading di kamar mesin masih menggunakan peraturan
untuk gading-gading di ruang muat. Oleh karena kamar mesin merupakan
tempat khusus yang mendapat beban tambahan, antara lain bangunan atas
atau rumah konstruksi khusus yang dapat menyalurkan bebanbeban tersebut.
Konstruksi tersebut berupa perbanyakan gading-gading besar atau sarang
dan senta lambung. Gading-gading besar dipasang di kamar mesin dan ruang
ketel, bila ada ruang ketel. Adapun pemasangannya ke atas sampai ke
geladak menerus teratas. Jika tinggi sisi 4 m, jarak rata-rata gading
besar adalah 3,5 m dan jika tinggi sisi 14 m, jarak rata-rata gading
besar adalah 4,5 m. Gading-gading besar dipasang pada ujung depan dan
ujung belakang mesin motor bakar, jika motor bakar mempunyai daya mesin
sampai kira-kira 400 kW. Dan jika motor bakar berdaya kuda antara 400 –
1.500 kW, dipasang sebuah gading besar tambahan pada pertengahan panjang
motor. Untuk tenaga yang lebih besar lagi dayanya, minimal ditambah 2
buah gading besar lagi.
Jika motor bakar dipasang di buritan kapal, harus dipasang senta di
dalam kamar mesin, sejarak 2,6 m. Letak senta diusahakan segaris dengan
senta di dalam ceruk buritan, jika ada, atau gading-gading besar
tersebut harus diperkuat. Jika tinggi sampai geladak yang terendah
kurang dari 4 m, minimum dipasang sebuah senta. Ukuran senta tersebut
sama dengan ukuran gading besar. Untuk menentukan modulus penampang
gading-gading besar, ukuran penampangnya tidak boleh kurang dari :W = K 0,8 e I Ps (cm3),
Di mana :
e = Jarak antara gading besar (m).
I = Panjang yang tidak ditumpu (m).
Ps = beban pada sisi kapal (kN/m2).
Momen kelembaman atau momen inersia gading-gading besar tidakboleh kurang dari :
J = H (4,5 H – 3,75) c 102 (cm4), untuk 3 m H 10 m.
J = H (7,25 H – 31) c 102 (cm4), untuk H > 10 m.
c = 1 + (Hu - 4) 0,07
di mana :
Hu = Tinggi sampai geladak terbawah (m)
Adapun Pelat bila Gading - Gading besar dihitung dengan rumus sebagai berikut :
h = 50 H (mm), dengan h minimum = 250 mm.
t = h (mm), dengan t minimum = 8,0 mm.
Kapal-kapal dengan tinggi kurang dari 3 m harus mempunyai gadinggading besar dengan ukuran tidak boleh kurang dari 250 kali 8 mm dan luas penampang pelat hadapnya minimum 12 cm2.
D. Selubung Kamar Mesin
t = h (mm), dengan t minimum = 8,0 mm.
Kapal-kapal dengan tinggi kurang dari 3 m harus mempunyai gadinggading besar dengan ukuran tidak boleh kurang dari 250 kali 8 mm dan luas penampang pelat hadapnya minimum 12 cm2.
D. Selubung Kamar Mesin
Dengan proses pembangunan kapal, sewaktu bangunan atas dan rumah geladak
belum dipasang, mesin utama sudah harus dimasukkan. Untuk memasukkan
mesin ke dalam kamar mesin, dibuat lubang khusus di atas kamar mesin
yang berupa bukaan dan dinamakan selubung kamar mesin. Bukaan di atas
kamar mesin dan kamar ketel tidak boleh lebih besar dari kebutuhan yang
ada. Dan, kebutuhan di sekitar selubung tersebut harus diperhatikan
cukup tidaknya komponen konstruksi melintang yang dipasang. Pada
ujung-ujung harus dibundarkan dan jika perlu diberi penguatanpenguatan
khusus. Potongan melintang kamar mesin dengan selubung.
Pada Gambar 4 dapat dilihat pandangan samping keseluruan kamar mesin, mulai dari dasar ganda sampai ke cerobong asap.
Gambar 4 Pandangan Samping Seluruh Isi Kamar Mesin
1. Pondasi mesin
2. Mesin utama
3. Dinding selubung kamar mesin
4. Jendela atas
5. Cerobong asap
6. Sekat depan kamar mesin
7. Sekat belakang kamar mesin
8. Pipa gas buang
9. Pelat alas
10. Geladak utama
11. geladak kimbul
12. Geladak sekoci
1. Pondasi mesin
2. Mesin utama
3. Dinding selubung kamar mesin
4. Jendela atas
5. Cerobong asap
6. Sekat depan kamar mesin
7. Sekat belakang kamar mesin
8. Pipa gas buang
9. Pelat alas
10. Geladak utama
11. geladak kimbul
12. Geladak sekoci
Menurut BKI, tinggi selubung diatas geladak / tidak boleh kurang dari
1,8 m, dengan catatan L tidak melebihi 75 m dan tidak kurang dari 2,3 m.
Jika L sama dengan 125 m atau lebih, harga-harga diantaranya diperoleh
interpolasi. Ukuran-ukuran penegar, tebal pelat dan penutup selubung
yang terbuka sama dengan untuk sekat ujung bangunan atas dan untuk rumah
geladak. Ketinggian selubung di atas geladak bangunan atas sedikitnya
760 mm, sedangkan ketebalan pelatnya boleh 0,5 mm lebih tebal dan
perhitungan di atas dengan jarak penegar satu sama lain, yaitu 750 mm.
Ketinggian bilah 75 mm dan ketebalan penegar harus sama dengan tebal
pelat selubung. Pada selubung kamar mesin dan ketel yang berada di bawah
geladak lambung timbul atau di dalam bangunan atas tertutup, tebal
pelatnya harus 5 mm. Jika terletak di dalam ruang muat, tebalnya 6,5 mm.
Pemasangan pelat ambang tersebut harus diteruskan sampai ke pinggir
bawah balok geladak. Jika selubung kamar mesin diberi pintu, terutama di
atas geladak terbuka dan di dalam bangunan atas yang terbuka, bahan
pintu tersebut harus dibuat dari baja. Pintu tersebut harus diberi
penguat dan engsel yang baik, dan dapat dibuka atau ditutup dari kedua
sisi dan kedap cuaca dengan pengedap karet atau pasak putar. Persyaratan
lain untuk pintu ini mempunyai tinggi ambang pintu 600 m di atas
geladak posisi 1 (di atas geladak lambung timbul) dan 380 mm di atas
geladak posisi 2 (di atas geladak bangunan atas). Pintu tersebut harus
mempunyai kekuatan yang sama dengan dinding selubung tempat pintu
dipasang.
E. Terowongan Poros
E. Terowongan Poros
Pada kapal – kapal yang mempunyai kamar mesin tidak terletak di
belakang, poros baling-baling akan melewati ruangan di belakang kamar
mesin tersebut. Untuk melindungi poros baling - baling diperlukan suatu
ruangan yang disebut Terowongan Poros (Shaft Tunnel). Terowongan poros
dibuat kedap air dan membujur dari sekat belakang kamar mesin sampai
sekat ceruk buritan. Ukuran terowongan harus cukup untuk dilewati orang.
Hal ini supaya orang masih dapat memeriksa, memperbaiki, dan
memeliharanya. Ada dua tipe terowongan poros yang sering digunakan,
yaitu terowongan yang berbentuk melengkung dan yang berbentuk datar sisi
atasnya. inding-dinding terowongan poros dibuat dari pelat dan diperkuat dengan penegar-penegar. Sesuai dengan ketentuan dari BKI, tebal dinding terowongan dibuat sama dengan tebal pelat kedap air dan ukuran penegar juga dibuat sama dengan prenegar sekat kedap air. Apabila dinding terowongan digunakan sebagai tangki, ukuran pelat dan penegar harus memenuhi persyaratan untuk dinding tangki. Tipe terowongan yang mempunyai atap melengkung mempunyai konstruksi yang lebih kuat dibandingkan dengan tipe terowongan datar, sehingga tebal pelat dapat dikurangi sampai 10% dari ketentuan. Penegar penegar atap dibuat mengikuti kelelengkungan atap dan disambung lurus dengan penegar dinding terowongan. Pada tipe terowongan poros atap datar, penegar-penegar dinding terowongan dengan pelat lutut. Jarak penegarpenegar trowongan poros pada umunnya dibuat sama dengan jarak gading atau wrang.
atasnya. inding-dinding terowongan poros dibuat dari pelat dan diperkuat dengan penegar-penegar. Sesuai dengan ketentuan dari BKI, tebal dinding terowongan dibuat sama dengan tebal pelat kedap air dan ukuran penegar juga dibuat sama dengan prenegar sekat kedap air. Apabila dinding terowongan digunakan sebagai tangki, ukuran pelat dan penegar harus memenuhi persyaratan untuk dinding tangki. Tipe terowongan yang mempunyai atap melengkung mempunyai konstruksi yang lebih kuat dibandingkan dengan tipe terowongan datar, sehingga tebal pelat dapat dikurangi sampai 10% dari ketentuan. Penegar penegar atap dibuat mengikuti kelelengkungan atap dan disambung lurus dengan penegar dinding terowongan. Pada tipe terowongan poros atap datar, penegar-penegar dinding terowongan dengan pelat lutut. Jarak penegarpenegar trowongan poros pada umunnya dibuat sama dengan jarak gading atau wrang.
Pada bagian atas terowongan poros dapat pula dipasang papanpapan
pelindung yang berguna untuk menahan kerusakan yang di akibatkan oleh
muatan.
Terowongan poros dapat juga dimanfaatkan untuk penempatan instalasi pipa. Pipa-pipa tersebut diletakkan di bawah tempat untuk berjalan di dalam terowongan poros. Di terowongan ini terdapat pula pintu kedap air, yaitu untuk menghubungkan terowongan dengan kamar mesin.
F. UKURAN KAMAR MESIN
Terowongan poros dapat juga dimanfaatkan untuk penempatan instalasi pipa. Pipa-pipa tersebut diletakkan di bawah tempat untuk berjalan di dalam terowongan poros. Di terowongan ini terdapat pula pintu kedap air, yaitu untuk menghubungkan terowongan dengan kamar mesin.
F. UKURAN KAMAR MESIN
- Panjang Kamar Mesin, Sebagai Dasar Pertimbangan Pemasangan Mesin Kapal Dan Perlengkapan Kapal Satu hal penting pada tahap awal perancangan adalah menentukan panjang kamar mesin, karena ukuran ini menentukan panjang kapal secara keseluruhan, yang selanjutnya juga mempengaruhi bentukkapal, performance, struktur dan sebagainya. Diluar pertimbangan kemudahan akses dan perawatan, panjang kamar mesin sebaiknya sependek mungkin, karena makin panjang kamar mesin, makin besar berat konstruksi, dan makin kecil kapasitas / ruang muat.
- Tinggi Kamar Mesin. Engine casing harus dibuat cukup tinggi untuk perawatan dan overhaulmesin induk secara priodik diadakan perawatan dan penggantian sehinggaperlu untuk di keluarkan, untuk keperluan pengeluaran piston ini dibutuhkanruang yang cukup atau tinggi engine casing harus cukup menunjang pekerjaan ini.
Seperti yang telah disebutkan dimuka bahwa sangat penting membuat layout
perencanaan awal untuk menentukan akibat dari pemilihan tenaga
penggerak terhadap konfigurasi atau susunan ruang untuk permesinan.
Didalam buku peraturan Klasifikasi Indonesia Volume III untuk
MachineryConstruction bagian satu B tentang Documents for approval
menyatakan :
1. PLATFROM
Di dalam merancang platform di dalam kamar mesin, beberapa pertimbangan perlu diambil yang antara lain adalah sebagai berikut :
Pada kapal dengan kamar mesin di belakang, posisi mesin induk harus diusahakan sejauh mungkin kebelakang untuk memperkecil panjang kamar mesin. Hal – hal yang harus diperhatikan untuk menetapkan posisi mesin induk adalah seperti berikut :
- Before the start of manufacture, drawings showing the general lay out of the machinery installation together with all drawing of parts subject to mandatory testing, to the extent specified in the following sections ofVolume III, are each to be submitted in triplicate to the society.
- The drawings must contain all the data necessary for checking thedesign, the loads and the stresses imposed. Where necessary, design calculations relating to components and descriptions of the plant are also to be supplied.
1. PLATFROM
Di dalam merancang platform di dalam kamar mesin, beberapa pertimbangan perlu diambil yang antara lain adalah sebagai berikut :
- Luas platform diusahakan sekecil mungkin, sesuai dengan kebutuhan.
- Peralatan yang berat diusahakan tidak diletakkan di platform, agar konstruksi platform tidak menjadi terlalu berat dan titik berat kapal tidak bergeser keatas.
- Salah satu platform kamar mesin sebaiknya dibuat sama tinggi dengan platform tertinggi mesin induk untuk memudahkan perawatan dan overhaul mesin.
- Untuk platform yang lain harus dipertimbangkan tinggi untuk perpipaandan pengkabelan, demikian juga kemungkinan overhaul permesinan yang besar seperti diesel generator dan sebagainya. Harus diperhatikan juga bahwa clearance ( tinggi ) minimum untuk lewat adalah sekitar 2 meter.
Pada kapal dengan kamar mesin di belakang, posisi mesin induk harus diusahakan sejauh mungkin kebelakang untuk memperkecil panjang kamar mesin. Hal – hal yang harus diperhatikan untuk menetapkan posisi mesin induk adalah seperti berikut :
- Tempat untuk intermediate shaft ( poros antara ).
Poros propeler harus dicabut dan diperiksa secara periodik, karenaitu dibelakang mesin induk harus ada tempat yang cukup untuk mencabutnya.Jarak antara ujung belakang poros engkol mesin dan ujung depan tabung poros ( stren tube ) harus lebih panjang dari panjang poros propeler. Biasanya diberikan margin sebesar 500 – 1000 mm seperti telah disebutkan dimuka. - Tempat untuk lewat dan perpiaan.
Di sisi – sisi ujung belakang mesin induk harus ada tempat yang cukup untuk orang lewat maupun penempatan perpipaan di bawah floor. - Tempat untuk cadangan poros propeler.
Kalau kapal membawa cadangan poros propeler, tempatnya biasanya disisi poros antara ini harus dipastikan pada saat menetapkan posisi mesin induk. Untuk menggantung poros cadangan tersebut, ruang diatasnya sekitar 2 meter harus bebas agar dapat menempatkan takal pengangkat ( chain block ). Untuk prosedur pencabutan poros propeler dan pengikatan poros cadangan, dianjurkan untuk berkonsultasi dengan perencana system poros. - Tempat untuk pengencangan baut pengikat.
Disekitar baut pengikat dan baut pas mesin induk harus tersedia ruang bebas agar orang bisa mengencangkan dan memeriksa baut pengikat mesin induk dengan leluasa. Karena itu tempat diatas baut – baut tersebut juga harus bebas dari perpipaan. Biasanya sisi dalam dari blok “ B “ ( side girder ) dibawah floor juga harus bebas. - Tempat untuk membuka tutup poros engkol ( deksel ).
Kedua sisi mesin induk pada ketinggian floor harus bebas dari penempatan peralatan untuk memudahkan pembukaan deksel. Biasanya tempat sekitar 600 mm di sekeliling mesin induk pada ketinggian floor dianggap cukup sekaligus untuk jalan ABK. - Grating mesin induk.
Untuk memudahkan perawatan dan pengawasan grating mesin induk tidak boleh dipotong. Kalau hal itu terpaksa dilakukan, misalnya untuk memudahkan pengangkatan peralatan dari floor ke atas, sebaiknya hal itu dikonsultasikan pihak produsen mesin. Lebar Engine Casing sebaiknya cukup untuk memasukkan mesin induk lengkap dengan gratingnya. - Pengikatan bagian atas mesin induk.
Untuk tipe mesin tertentu seperti Mitsuib & W l90GFCA dan L80GFCA, harus dibuat sejumlah alat pengikat. Untuk ini balok grating mesin dihubungkan dengan balok pengikat ke struktur kapal. Jumlah balok pengikat yang dibuat harus dengan persetujuan pihak produsen mesin. Karena fungsi pengikat ( top bracing ) ini untuk menghilangkan getaran, maka struktur kapal tempat pengikat ini harus betul – betul rigid. Karena itu juga sebaiknya platform kapal dibuat pada ketinggian grating mesin induk. Dalam merancang peletakan tangga, perpipaan, ducting ventilasi dll. Harus diperhatikan adanya batang – batang pengikat ini. - Manifold gas buang.
Manifold gas buang mesin induk setelah turbocharger harus diikat pada struktur kapal dengan penyangga yang kuat. Penyangga ini harus begitu kuat sehingga mampu menahan getaran yang kuat serta tahan terhadap ekspansi termal akibat temperatur gas buang yang tinggi. Struktur kapal tempat penyangga ini tentu saja harus sama kuat dengan penyangganya. Untuk mengatasi tegangan akibat ekspansi termal, pada pipa gas buang harus dipasang beberapa expansion joint. Pada tahap awal perancangan, penempatan dan pengikatan pipa gas buang ini harus dirancang sebaik baiknya. Pengaturannya harus sedemikian sehingga kerugian tekanan bisa diperkecil dengan cara :- Sedikit mungkin jumlah bengkokan.
- Radius belokan tidak lebih kecil dari diameter pipa.
- Total panjang pipa harus sependek mungkin.
- Sudut persilangan harus seruncing mungkin.
Tidak ada komentar:
Posting Komentar